
Neural Field Movement Primitives
for Joint Modelling of Scenes and Motions

Ahmet Tekden1 Marc Peter Deisenroth2 Yasemin Bekiroglu1,2

Abstract— This paper presents a novel Learning from
Demonstration (LfD) method that uses neural fields to learn
new skills efficiently and accurately. It achieves this by utilizing
a shared embedding to learn both scene and motion represen-
tations in a generative way. Our method smoothly maps each
expert demonstration to a scene-motion embedding and learns
to model them without requiring hand-crafted task parameters
or large datasets. It achieves data efficiency by enforcing scene
and motion generation to be smooth with respect to changes
in the embedding space. At inference time, our method can
retrieve scene-motion embeddings using test time optimization,
and generate precise motion trajectories for novel scenes. The
proposed method is versatile and can employ images, 3D shapes,
and any other scene representations that can be modeled using
neural fields. Additionally, it can generate both end-effector
positions and joint angle-based trajectories. Our method is
evaluated on tasks that require accurate motion trajectory
generation, where the underlying task parametrization is based
on object positions and geometric scene changes. Experimental
results demonstrate that the proposed method outperforms the
baseline approaches and generalizes to novel scenes. Further-
more, in real-world experiments, we show that our method
can successfully model multi-valued trajectories, it is robust to
the distractor objects introduced at inference time, and it can
generate 6D motions.

I. INTRODUCTION

Learning from demonstration (LfD) methods enable robots
to bootstrap the acquisition of new skills necessary to com-
plete tasks by leveraging expert-provided demonstrations [1].
These methods are useful in tasks where modeling the motion
with respect to scene variations is difficult. When the task
is complex, and the associated scene can only be described
using highly nonlinear task parameters, LfD can facilitate the
acquisition of new skills. It offers insights into how the skill
is affected by changes in the task parameters and enables
easier generalization to previously unseen scene conditions.

Movement primitives [2], [3], [4], [5], [6], [7] are often
built upon LfD approaches that provide an efficient way to
teach robots complex motor skills. In LfD, data efficiency
corresponds to the number of expert demonstrations required
to model the motion correctly. These methods [4], [6],
[5], [7] generally employ hand-crafted task parameters that
well describe the scene to learn skills that generalize to
novel scenes in a data-efficient way. Common examples
of these task parameters are waypoints, obstacle locations,
and sizes. Often, these task parameters have to be provided

This work was supported by Chalmers AI Research Center (CHAIR) and
Chalmers Gender Initiative for Excellence (Genie), and partially supported
by the Wallenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation. 1Electrical Engi-
neering, Chalmers University of Technology, Sweden. 2Computer Science,
University College London, U.K. Email: tekden@chalmers.se

Fig. 1. Examples illustrating the approach: Two expert demonstrations for
two different plastic container locations are shown on top. Our network
can smoothly and accurately interpolate between these demonstrations,
generating the images and the trajectories corresponding to the unseen
intermediate plastic container locations.

by the user, or they need to be estimated, which requires
further engineering effort by experts that have access to clear
knowledge of the tasks, and know the limitations of the
underlying methods. To reduce the dependence on experts,
some movement primitive architectures use raw images [4],
[8] to extract the factors that influence the skill. However,
they usually require a thousand [4], or a few thousand [8]
demonstrations to achieve this. We propose an alternative
approach: modeling the scenes and the motions using neural
fields. Recently, it has been shown that neural fields [9]
can be utilized to represent 3D scenes [10], shapes [11],
images [12] using small amount of data. Inspired by this,
we propose an LfD method that jointly models the scenes
and the motions using neural fields. Our method1 learns
to reconstruct the motion trajectories and the scenes given
corresponding expert demonstrations of the task using neural
fields. Later, it can generate accurate motion trajectories
for novel scenes. An example generation of our method is
shown in Figure 1. In this figure, our method interpolates
between two expert demonstrations with different container
locations and accurately generates the scene and the motion

1Project page: https://fzaero.github.io/NFMP/

https://fzaero.github.io/NFMP/


representations for unseen container locations. Unlike the
previous works, our method achieves such trajectory gen-
eration without access to task parameter vectors at training
or test time. Furthermore, it uses a similar number of expert
demonstrations that the task parameter-based LfD methods
use.

Neural fields [9] are powerful scene representation tools
that can be employed to model images, surfaces, and 3D
scenes. Using them allows for representing scenes in a format
ideal for the task and provides a versatile way of modeling
movement primitives. Neural fields can be equipped to
handle modeling smooth changes in the scene by using
deformation and template neural fields. Using deformation
fields, our method maps smooth scene and motion changes
to each other, enabling accurate motion trajectory generation
for novel scenes. However, when there is a large change
between samples, deformation fields fail to model changes
in the scene correctly (i.e., rapid scene changes [13]). This
is because neural fields model complex signals through po-
sitional encodings [14]: Low-frequency positional encodings
are good at modeling smooth changes, while high-frequency
positional encodings are good at capturing fine details.
Using low-frequency positional encodings results in overly
smooth scene reconstruction. However, with high-frequency
positional encodings, the model starts overfitting to high-
frequency details in low-sample density settings and loses
the generalization capacity. To prevent this from happening,
we propose using low-frequency positional encodings for the
deformation field while keeping the template field the same.
This allows our network to capture the details necessary to
represent the scene while still preserving the smoothness that
low-frequency positional encodings provide.

Our main contributions can be summarized as follows:
• We propose a novel LfD method that simultaneously

generates a scene and a motion representation by uti-
lizing a shared embedding. Our method assigns an em-
bedding vector to each expert demonstration and learns
scene and motion neural fields smoothly parametrized
with the embeddings. On novel scenes, by employing
test time optimization to find an embedding that can
correctly generate the scene, our approach can general-
ize to new scenarios and accurately predict the correct
motion.

• Our method preserves the smooth changes in the scene
by using low-frequency positional encodings for the
deformation field. This allows our approach to be data-
efficient while still capturing the necessary details to
represent the scene. For all the experiments, the method
generalizes to the novel scenes based on low number
of demonstrations (3n demonstration for n independent
task parameters).

• We evaluate our approach both in simulation and
real-world experiments. Simulation results show that
our method outperforms the baseline movement primi-
tive networks on the tasks where the underlying task
parametrization is based on object positions and ge-
ometric scene changes. Our real-world experiments

demonstrate that our method can handle multi-valued
trajectories through implicit modeling of the motion.
In addition, our method is robust to distractor objects
introduced to the scene at the inference time, and it can
model 6D pick and place tasks using a surface-based
representation.

II. RELATED WORK

Learning from Demonstration (LfD) is a widely used ap-
proach in robot learning that leverages expert demonstrations
to bootstrap the learning process [1], [15]. LfD [16] can be
employed to encode continuous joint or state trajectories,
e.g. movement primitives [2], [3], [7], [4], [5]; experi-
ence abstractions, e.g. behavioral cloning [17], [18], offline
RL [19]; and task waypoints, e.g. affordance heatmaps [20],
keypoints [21], [22], [23]. Our work is related to the first
category, where the underlying robotic skills are encoded
as low-level motion trajectories using neural fields. Methods
in this category often use task parameters that describe
the scene compactly to reduce the number of trajectories
necessary to generalize to the variations in the scene [24].
However, this requires accurate extraction of task parameters
from the scene both during the training and the test time. This
can be challenging as it requires developing sophisticated
techniques to estimate the task parameters for each different
task. In practice, it is often handled by direct provision of
the task parameters by a human operator. In contrast, our
network directly works with any scene representation that
can be generated through neural fields and is validated with
RGB images and signed distance functions (SDF) [11]. Fur-
thermore, by modeling the motions and the scenes through a
shared embedding, our method learns movement primitives
that smoothly generalize to changes in the task parameters.
This allows our method to learn new skills with a simi-
lar number of demonstrations that previous task-parameter-
based movement primitive methods use.

For representing scenes and motions, we use neural fields.
Neural Fields [9] are coordinate-based neural networks: They
take continuous spatial or temporal coordinates as input
to parametrize functions of such coordinates. They allow
for a representation of a wide variety of scene modali-
ties, including images [12], implicit surfaces [11], [25], 3D
scenes [10], point clouds [26], tactile readings [27], and
even audio [12]. Such representations have been used for
SLAM [28], navigation [29], control [30], and affordance
estimation [31]. Unlike these works, our method utilizes
neural fields to generate scenes and their corresponding
motion trajectories.

Neural fields have also been used to map scenes to grasp
locations [32] or grasp trajectories [33] using implicit func-
tions. However, these networks employ large datasets that
can only be generated via simulations. They learn the grasp
trajectories from millions of samples. In addition, designing
a new environment for each unique task and bridging the
simulation-to-reality gap are essential requirements for such
methods. Instead, our method requires only a handful of
demonstrations to model each new task by mapping scene



Fig. 2. Our network maps scene-motion embeddings to scene representations, e.g. RGB images or signed distance functions (SDF)
, and motion representations, such as joint angles or end-effector position of the robot (A). At inference time, through

test-time optimization, scene-motion embeddings can be obtained through scene reconstruction loss (B-1) and can be used
to reproduce trajectories for new scenes (B-2).

changes to the motion. It can directly learn from real-world
data, and it can still generate accurate motion trajectories.
Other neural field-based approaches aim to model the scene
changes smoothly through deformation fields [13], [34].
However, these networks attain smoothness through denser
data sampling. Collecting such densely sampled data in LfD
settings is challenging as each scene variation requires an
expert demonstration. Instead, we use low-frequency posi-
tional encodings to model smooth changes in a data-efficient
way.

III. METHOD

The overall framework is illustrated in Figure 2. Our
network does not have traditional inputs and outputs. In-
stead, it assigns a scene-motion embedding for each expert
demonstration. At training time, our method jointly learns
to render the scene and reconstruct the motion for each
provided demonstration, while optimizing their shared scene-
motion embeddings (A). Our method can employ a wide
range of scene and motion modalities that neural fields can
model as long as their underlying representations are smooth.
At inference time, for a given scene, the scene-motion
embedding is first found through test-time optimization that
minimizes the scene reconstruction loss (B-1). Later, this
embedding is used to generate the corresponding motion
trajectory (B-2). Section V provides example tasks modeled
using our method.

A. Problem Formulation

We are interested in LfD tasks parametrized with task
parameter vector p where the scene is represented with the
function fp(x) with spatial coordinate x ∈ Rm, and motion
is represented with function gp(t) with normalized temporal
coordinates t ∈ [0, 1]. For these LfD tasks, fp(x) and gp(t)
are smooth functions of p 2.

B. Neural Fields

Neural fields are coordinate-based neural networks that
take spatial or/and temporal coordinates and parametrize
physical properties of the scene, objects, or motions. Scene
and motion functions, fp(x) and gp(t), can be modeled as
neural fields parameterized with task parameter vector p.
Neural fields can model a wide range of scene and motion
representations:

Images: Images are common visual representations in
robotics acquired using a wrist or a scene camera. Using
coordinate-based MLPs, a mapping, R2 → R3, between pixel
locations and RGB values is learned to represent the scenes.

Surfaces: 3D surfaces are represented with signed dis-
tance functions (SDFs) R3 → R1, which map 3D locations
onto their corresponding signed distance value [11]. For a
given point x, SDF yields the distance between the underly-
ing surface and x, which is defined as x < 0 if x is inside

2This is generally assumed in most LfD tasks.



the surface, and x > 0 if x is outside of the surface. Through
the marching cubes algorithm [35], the 3D mesh of the scene
is recovered using the signed distance values obtained from
the SDF.

Motion Trajectory: The motion trajectory is the se-
quence of states of end effector poses or joint angles. Using
normalized temporal coordinates, a mapping, R1 → Rn,
between time t and n-dimensional joint/pose state q is
employed to model the motion. In the case of multi-valued
trajectories, motion is represented implicitly with a mapping
Rn+1 → R1, where (q, t) coordinates are mapped to state or
cost values [18].

In our framework, we adapt the neural field architecture
proposed in SIREN [12], and model the neural fields with
multi-layer perceptron (MLP) parametrized using a Hyper-
net [36].

C. Positional Encodings

Using spatial or temporal coordinates directly in neural
networks leads to blurry reconstructions [10]. To prevent
this, positional encodings [14] are utilized. Specifically, for
a coordinate x ∈ Rm, we use the positional encoding map
Γ(x) = [x,Γ0(x),Γ1(x), . . . ,ΓL−1(x)] ∈ Rm+2mL, where
Γn(x) = [cos(2nπx), sin(2nπx)] ∈ R2m and L is the num-
ber of frequency bands. Higher frequency bands are useful
for representing high-frequency signals, such as fine details.
In contrast, lower frequency bands are better at capturing
low-frequency signals, such as the general silhouette of the
scene.

D. Scene-motion Embeddings

Obtaining task parameters that describe the scene well is
often challenging, even for the initially provided demonstra-
tions. Instead, we assign a scene-motion embedding z ∈ Rk

to each demonstration with an unknown task parameter
vector p. We then represent the scene and the motion as
smooth functions of embedding z. With this new formulation,
tasks are equivalently represented with neural fields Fz(x)
and Gz(t) parameterized by z embedding.

(Fz(x), Gz(t)) ≡ (fp(x), gp(t)) (1)

In LfD, the number of available demonstrations is often
small. This makes it challenging for an encoder network to
learn a smooth mapping between the input scenes and the
latent space for z. As a result, even slight changes in the
scene may cause large changes in the motion at inference
time, potentially resulting in incorrect motion predictions.
Instead, we directly optimize the z embeddings for each
expert demonstration alongside the scene and motion neural
fields. Test time optimization is utilized at inference time to
predict the correct z embedding for new scenes.

E. Deformation and Template Fields

In our framework, we assume the scenes are smooth
functions of the task parameters, and the changes between
the scenes can be expressed using deformations. With this
assumption, we model the scene using a template neural field

that models the canonical scene T (x) and its deformation
with a deformation field Dz(x) = ∆x:

Fz(x) = T (x+Dz(x)). (2)

As the template field corresponds to the canonical scene and
is not parametrized with z, it is modeled using a standalone
MLP.

The deformation field causes an under-constrained opti-
mization problem where different deformations could result
in the same scene reconstruction. Increasing the sampling
density of the scene with respect to the task parameters could
alleviate this issue to some extent. However, as we would like
to minimize the number of provided expert demonstrations,
we rely on the following two approaches to address this
problem:

Coarse-to-fine Approximation: In scene reconstruction
with neural fields, using a small number of frequency bands
admits low-resolution reconstruction, while a higher num-
ber of bands admit high-resolution reconstruction. In low-
resolution reconstruction, it is easier to model larger changes
in the scene; in high-resolution reconstruction, it is easier
to model small scene changes. To balance this tradeoff,
we use a coarse-to-fine approximation where the network
first uses a low number of frequency bands, and the higher
frequency bands are gradually introduced. This is achieved
by applying a smoothing mask to the positional encodings.
We adopt the coarse-to-fine approximation method proposed
in the BARF [37].

Deformation Fields with a Lower number of frequency
bands: In our work, we model the template field using a high
number of frequency bands and the deformation field using
a low number of frequency bands. This allows our network
to capture the details necessary to represent the scene while
preserving the smoothness provided by the low-frequency
positional encodings.

F. Test Time Optimization

We estimate the z embedding through test time optimiza-
tion. Given the scene image or the signed distance values
of the modelled surface, we can find the embedding z that
minimizes the scene reconstruction loss

argminz Lscene(Fz, X) =
∑

(xj ,sj)∈X

∥Fz(xj)− sj∥22 (3)

where sj corresponds to the ground truth scene signal
at position xj for scene samples X . Ideally, the neural
networks should establish a one-to-one mapping between
the embeddings and the scene-motion functions. However,
the network might learn embeddings that correspond to the
same scene but with different motions. To mitigate this, we
constrain the search space to the convex hull of embeddings
utilized in the training process. If there are n demonstrations
in the training set, the optimization problem becomes

argminα Lscene(Fz, X) where z =

n−1∑
i=0

αizi (4)



Fig. 3. Tasks and the trajectory visualization of the expert demonstrations.
Experiments for tasks A and B are conducted in simulation while others are
conducted in real-world. For task C, each scene has two alternative motions
shown with the color orange and light green.

where α = [α0, ..., αn−1] and
∑i=n−1

i=0 αi = 1; αi ≥ 0. zi
corresponds to the learned embedding of the expert demon-
stration i. With this equation, z is not directly optimized but
estimated as the weighted sum of demonstration embeddings.

IV. IMPLEMENTATION DETAILS

For all neural fields, a 3-layer Relu MLP with 128 hidden
layer sizes and for Hypernets, a 2-layer Relu MLP with
64 hidden layer sizes are used. For template and motion
fields, positional encodings with 8 frequency bands and for
the deformation field, positional encoding with 2 frequency
bands are employed. All scene-motion embeddings used in
our experiments have a vector size of 128. All experiments
are conducted with a UR10 robot equipped with an RG2
gripper and D435i wrist camera. Pybullet [38] simulator is
used for simulation experiments.

We initialize the z embedding for each demonstration as
zero vectors. We use the learning rate 10−3 for network
parameters, and 10−4 for embeddings during training. We
use L2 loss between the predicted and the ground truth signal
values for motion and scene reconstruction, and the square of
the Euclidean norm of embeddings as regularization loss. To
prevent learning unnecessary deformation mappings between
background pixels, we utilize the square of the Euclidean
norm of deformations. In summary, the loss function during
training is formulated as:

w1Lmotion + w2Lscene + w3Ldeform reg + w4Lembedding reg

where w are weights for each loss term. Values for w1 and w2

are chosen such that they balance each other during training.
For w3 and w4, we choose the highest values that do not
hinder the performance of the scene and motion reconstruc-
tion. All network parameters are fixed at the test time, and
we optimize the α vector with a learning rate 0.05 for each
test demonstration only from the scene reconstruction loss
Lscene. Adam [39] optimizer is used both for training and
test time optimization.

Fig. 4. Illustration of how tasks are parameterized. Each arrow shows the
extent and the boundary of each task parameter. Expert demonstrations for
each task are collected from the boundary and the center locations of the
task parameters. The generalization is tested on the interpolation region of
these task parameters.

TABLE I
TASK DETAILS

Task Name Scene Modality Motion Modality
Peg in hole RGB Image Joint Angles

Wall Avoidance 1 RGB Image Joint Angles
Wall Avoidance 2 RGB Image Multi-valued Position
6D Pick and Place Object Surface Joint Angles

V. EXPERIMENTS

To demonstrate the capabilities of our network, we design
two simulation and two real-world robotic experiments. Vi-
sualizations of the experiment setups along with the demon-
strated trajectories are shown in Figure 3 and their details can
be found in Table I. Furthermore, Figure 4 shows the task
parameterization. These experiments demonstrate that our
framework works on RGB and SDF-based scene representa-
tions and position- and joint-based motion representations.

For a baseline comparison, we use two versions of a
recent neural network-based motion primitive architecture,
CNMP [4]. These baselines are task parameter CNMP (TP-
CNMP), which has direct access to task parameters, and
C-CNMP, which processes the image of the scene via a
CNN encoder to predict the motion trajectory. The network
proposed in this paper outperforms the baseline architec-
ture on generalization to shape and position in simulation
experiments. In addition, as supported by the real robot
experiments, the network can model multi-valued trajectories
using implicit motion representation and enables 6D pick-
and-place through 3D shape-based generalization.

A. Shape and Position Based Generalization

To test our model’s generalization capacity, we design
two simulation experiments: based on position, and shape
generalization. For both experiments, a scene camera is
placed on the opposite side of the robot so that it can well
capture the possible changes in the scene.

For the position-based generalization, we set up a peg-in-
hole experiment. This experiment contains a box with a peg



Fig. 5. Comparison between reconstructed images and ground-truth images.
Images with a red border are not seen during the training. However, the scene
neural field can smoothly interpolate between the images seen in training
and can reconstruct the unseen ones.

slot put on a table at a given (x, y) location. The task for
the robot is to insert the peg into the slot on the box while
generalizing to its location. A trajectory for the task is shown
in Figure 3A. The task parameters for this task are the x and
y location of the box. For the shape-based generalization, we
set up a wall avoidance experiment with three walls. How this
task is parameterized, and the trajectory that robot follows
with its end effector is shown in Figure 4B, and Figure 3B.
This task can be expressed most compactly with three task
parameters: the first wall’s height, the gap location on the
second wall, and the third wall’s height.

For both experiments, joint angle-based motion representa-
tions, and RGB image-based scene representations are used.
For generating the training datasets, expert demonstrations
and the corresponding scene images are collected from the
boundary and the center locations of the task parameters.
These datasets are named 3x3 and 3x3x3 for peg-in-hole
and wall-avoidance experiments, respectively, and contain 9
and 27 expert demonstrations. For evaluating our network,
test datasets using mesh grids of the task parameters with
grid sizes 4 and 5 are collected. These datasets contain data
from the interpolation region of training demonstrations, and
they aim to show how much our network can generalize to
novel scenes. These datasets are named based on their grid
configurations: 4x4, and 5x5 with 16 and 25 trajectories,
respectively, for the peg-in-hole experiment, and 4x4x4 and
5x5x5 with 64 and 125 trajectories, respectively, for the wall-
avoidance experiment.

Our comparison with the baseline architecture can be
found in Table II. Our network outperforms both baselines
in all cases. Task-parameter-based CNMP performs better
than CNN-based one. However, even when the CNMP uses
the task parameters directly, our method outperforms it, espe-
cially for the wall experiment, which involves more complex
motion generation. This is because positional encoding not
only improves the scene generation but also enhances the

TABLE II
GENERALIZATION RESULTS (AVERAGE JOINT ANGLE ERROR IN deg)

Test Case Our Method TP-CNMP C-CNMP
3x3 0.94 1.01 1.24
4x4 2.40 2.55 3.03
5x5 2.28 2.60 3.04

3x3x3 1.36 3.87 2.28
4x4x4 2.13 3.75 3.90
5x5x5 2.27 3.76 4.13

motion generation (i.e., without positional encoding, neural
network generates overly-smooth trajectories). To illustrate
our network’s smooth interpolation capability, we further
show our model’s scene generation results from 5x5 and
5x5x5 datasets in Figure 5. In the first and third rows, data
points seen in training are shown with a green border, while
unseen ones are shown with a red border. In the second and
fourth rows, it can be seen that our network can successfully
model shape and position changes between samples correctly.

B. Multi-valued Trajectory Generation

This experiment shows that our method can model multi-
valued trajectories by using implicit motion representations.
The experiment includes several objects and obstacles: a blue
cube on the left side of the table, a wall made of boxes in
the middle, and a plastic container on the other side of the
table. The task for the robot is to pick up the blue cube and
drop it into the plastic container while avoiding the wall.
However, this task can be achieved in two different ways,
as illustrated in Figure 3C. The task is parameterized with
the number of boxes in the wall, and the y location of the
plastic container. The task is modeled using RGB images
and position trajectories. Training data is collected using
walls with one, three, and five boxes and a plastic container
with three different locations, where y={−0.15, 0, 0.15}.
For each scene, one trajectory that goes from the left and
one trajectory that goes from the right are recorded. In total,
18 demonstrations are collected.

Since there are two alternative trajectories for each scene,
we model the motion implicitly. This is achieved as follows:
for a given 3D location in the scene, if it is on one of
the ground truth trajectories, the cost value corresponds
to 0; otherwise, its cost value is equal to its distance to
the ground truth trajectories (for the distance calculation,
the time coordinate is also included). However, implicit
trajectory representations lack the same level of smoothness
as explicit representations. Therefore, we similarly adopt
deformation fields for representing the implicit motion.

Since implicit motion only provides the cost function, the
optimal trajectory is acquired by optimizing the following
term:

argminq

∫ 1

t=0

Gz(qt, t).

While previous movement primitive methods [3], [4] require
conditioning to handle multi-valued trajectories, our method
can directly generate optimal trajectories without such con-
ditioning. Nevertheless, if required, soft conditioning of the



Fig. 6. Illustration on the robustness of our method against distractor objects. Our method successfully ignores the distractor objects in its image
reconstructions and can generate accurate motion trajectories for unseen environments.

Fig. 7. Illustration on how our method can utilize surface-based representations. While our method fails to model the opening of the box in its shape
reconstruction due to the quality of the modeled mesh, it still manages to model the rotation of the box correctly. This allowed our method to generalize
to novel scenes, and generate accurate motion trajectories for them.

trajectory can be achieved by initializing q close to the
desired trajectory mode.

We evaluate our method with 12 unseen environments,
with walls made of two and four boxes, and novel plastic
container locations. To further test our method’s robustness,
distractor objects are added to the scene. These distractor
objects and how our method ignores them in its scene re-
constructions and successfully generates motion trajectories
are shown in Figure 6. For these 12 unseen environments,
our method accurately generates correct trajectories and
acquires 100 % accuracy. Furthermore, Figure 1 illustrates
the smooth interpolation of scenes and trajectories between
demonstrations 0 and 2. Overall, our method can accurately
model this task.

C. Shape-based motion generation

In this experiment, we show that our model can exploit
surface-based 3D shape representations, which do not have
a structured rasterized format, and enable performing a 6D
pick-and-place task.

For this experiment, the task is to pick up the blue cube
and place it in the box as shown in Figure 3D. This box
is placed with yaw and pitch rotations shown in Figure 4D.
As this box is angled, the robot needs to adapt its trajectory

according to the rotation of the box. Moreover, the opening of
the box is narrow, and the task requires around 2 cm precision
to prevent the robot from colliding with the sides of the box.

The task is modeled using signed distance values and
joint angle trajectories. For acquiring the ground truth scene
representation, a set of points with their corresponding
signed distance values are sampled from the mesh of the
box estimated by recording the scene from 8 pre-defined
camera poses. For this process, open3D [40] and pointcloud-
utils [41] libraries are employed. The training dataset is
collected on scenes with yaw rotations angles of −30o, 0o,
and 30o and pitch rotations corresponding to setting the stand
on the first, third, and fifth gaps.

Similarly to our previous experiment, we evaluate our
method’s performance on 12 unseen environments with novel
yaw and pitch rotations. Our method generates accurate
trajectories for each scene and manages to acquire 100 %
accuracy. However, since the estimated mesh is not water-
tight, meshes reconstructed using our method cannot model
the opening of the box. Yet, since it can accurately model
the rotation of the box, it still generates correct trajectories.
Examples of estimated and reconstructed meshes, and their
corresponding motion trajectories are shown in Figure 7.



VI. CONCLUSION

In this work, we present a novel LfD method that can si-
multaneously model the scene and the motion for a task. Our
experiments show that our method can generalize to novel
scenes by accurately generating their motion trajectories
and reconstructing their underlying scene representations. In
addition, the proposed approach outperforms the baseline
methods, can use multiple different scene modalities, such as
RGB images and SDF, can model multi-valued trajectories,
and is robust to disturbances. In future work, we plan to in-
crease our method’s data efficiency further and enable effect-
based conditioning for trajectory generation. Furthermore,
we plan to validate our method in a wider variety of task
settings, including dexterous manipulation.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[2] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, et al., “Dynamical move-
ment primitives: learning attractor models for motor behaviors,” Neu-
ral computation, vol. 25, no. 2, pp. 328–373, 2013.

[3] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic
movement primitives,” Advances in neural information processing
systems, vol. 26, 2013.

[4] M. Y. Seker, M. Imre, J. H. Piater, and E. Ugur, “Conditional neural
movement primitives.” in Robotics: Science and Systems, vol. 10,
2019.

[5] Y. Zhou, J. Gao, and T. Asfour, “Learning via-point movement
primitives with inter-and extrapolation capabilities,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 4301–4308.

[6] M. Akbulut, E. Oztop, M. Y. Seker, et al., “Acnmp: Skill transfer and
task extrapolation through learning from demonstration and reinforce-
ment learning via representation sharing,” in Conference on Robot
Learning. PMLR, 2021, pp. 1896–1907.

[7] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent service robotics, vol. 9, pp. 1–29, 2016.

[8] A. Gams, A. Ude, J. Morimoto, et al., “Deep encoder-decoder net-
works for mapping raw images to dynamic movement primitives,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 5863–5868.

[9] Y. Xie, T. Takikawa, S. Saito, et al., “Neural fields in visual computing
and beyond,” Computer Graphics Forum, 2022.

[10] B. Mildenhall, P. P. Srinivasan, M. Tancik, et al., “Nerf: Representing
scenes as neural radiance fields for view synthesis,” in European
conference on computer vision. Springer, 2020, pp. 405–421.

[11] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“Deepsdf: Learning continuous signed distance functions for shape
representation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 165–174.

[12] V. Sitzmann, J. Martel, A. Bergman, et al., “Implicit neural repre-
sentations with periodic activation functions,” Advances in Neural
Information Processing Systems, vol. 33, pp. 7462–7473, 2020.

[13] K. Park, U. Sinha, J. T. Barron, et al., “Nerfies: Deformable neural
radiance fields,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2021, pp. 5865–5874.

[14] M. Tancik, P. Srinivasan, B. Mildenhall, et al., “Fourier features let
networks learn high frequency functions in low dimensional domains,”
Advances in Neural Information Processing Systems, vol. 33, pp.
7537–7547, 2020.

[15] S. Schaal, “Learning from demonstration,” Advances in neural infor-
mation processing systems, vol. 9, 1996.

[16] M. Tavassoli, S. Katyara, M. Pozzi, et al., “Learning skills from
demonstrations: A trend from motion primitives to experience abstrac-
tion,” IEEE Transactions on Cognitive and Developmental Systems,
2023.

[17] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from obser-
vation,” in Proceedings of the 27th International Joint Conference on
Artificial Intelligence, 2018, pp. 4950–4957.

[18] P. Florence, C. Lynch, A. Zeng, et al., “Implicit behavioral cloning,”
in Conference on Robot Learning. PMLR, 2022, pp. 158–168.

[19] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

[20] A. Zeng, P. Florence, J. Tompson, et al., “Transporter networks:
Rearranging the visual world for robotic manipulation,” in Conference
on Robot Learning. PMLR, 2021, pp. 726–747.

[21] P. R. Florence, L. Manuelli, and R. Tedrake, “Dense object nets: Learn-
ing dense visual object descriptors by and for robotic manipulation,”
in Conference on Robot Learning. PMLR, 2018, pp. 373–385.

[22] L. Yen-Chen, P. Florence, J. T. Barron, et al., “Nerf-supervision:
Learning dense object descriptors from neural radiance fields,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 6496–6503.

[23] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, et al.,
“Neural descriptor fields: Se (3)-equivariant object representations
for manipulation,” in 2022 International Conference on Robotics and
Automation (ICRA). IEEE, 2022, pp. 6394–6400.

[24] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual review of
control, robotics, and autonomous systems, vol. 3, pp. 297–330, 2020.

[25] L. Mescheder, M. Oechsle, M. Niemeyer, et al., “Occupancy networks:
Learning 3d reconstruction in function space,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 4460–4470.

[26] Q. Xu, Z. Xu, J. Philip, et al., “Point-nerf: Point-based neural radiance
fields,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 5438–5448.

[27] Y. Wi, P. Florence, A. Zeng, and N. Fazeli, “Virdo: Visio-tactile
implicit representations of deformable objects,” in 2022 International
Conference on Robotics and Automation (ICRA). IEEE, 2022, pp.
3583–3590.

[28] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “imap: Implicit map-
ping and positioning in real-time,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 6229–6238.

[29] M. Adamkiewicz, T. Chen, A. Caccavale, et al., “Vision-only robot
navigation in a neural radiance world,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 4606–4613, 2022.

[30] Y. Li, S. Li, V. Sitzmann, et al., “3d neural scene representations for
visuomotor control,” in Conference on Robot Learning. PMLR, 2022,
pp. 112–123.

[31] Y.-C. Lin, P. Florence, A. Zeng, et al., “Mira: Mental imagery for
robotic affordances,” in Conference on Robot Learning. PMLR, 2023,
pp. 1916–1927.

[32] Z. Jiang, Y. Zhu, M. Svetlik, et al., “Synergies between affordance
and geometry: 6-dof grasp detection via implicit representations,”
Robotics: Science and Systems, 2021.

[33] T. Weng, D. Held, F. Meier, and M. Mukadam, “Neural grasp distance
fields for robot manipulation,” IEEE International Conference on
Robotics and Automation (ICRA), 2023.

[34] Y. Deng, J. Yang, and X. Tong, “Deformed implicit field: Modeling
3d shapes with learned dense correspondence,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 10 286–10 296.

[35] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” ACM siggraph computer graphics,
vol. 21, no. 4, pp. 163–169, 1987.

[36] D. Ha, A. M. Dai, and Q. V. Le, “Hypernetworks,” in International
Conference on Learning Representations, 2017.

[37] C.-H. Lin, W.-C. Ma, A. Torralba, and S. Lucey, “Barf: Bundle-
adjusting neural radiance fields,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 5741–5751.

[38] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in International Conference on Learning Representations, 2015.

[40] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for
3D data processing,” arXiv:1801.09847, 2018.

[41] F. Williams, “Point cloud utils,” 2022. [Online]. Available: https:
//www.github.com/fwilliams/point-cloud-utils

https://www.github.com/fwilliams/point-cloud-utils
https://www.github.com/fwilliams/point-cloud-utils

	Introduction
	Related Work
	Method
	Problem Formulation
	Neural Fields
	Positional Encodings
	Scene-motion Embeddings
	Deformation and Template Fields
	Test Time Optimization

	Implementation Details
	Experiments
	Shape and Position Based Generalization
	Multi-valued Trajectory Generation
	Shape-based motion generation

	Conclusion
	References

